Analysis and Synthesis of Pose Variations of Human Faces by a Linear PCMAP Model and its Application for Pose-Invariant Face Recognition System
نویسندگان
چکیده
A method of manifold representation for human faces with pose variations is proposed. Our model consists of mappings between 3D head angles and facial images separately represented in shape and texture, via sub-space models spanned by principal components (PCs). Explicit mappings to and from 3D head angles are used as processes of pose estimation and transformation, respectively. Generalization capability to unknown head poses enables our model to continuously cover pose parameter space, providing high approximation accuracy. The feasibility of this model is evaluated in a number of experiments. We also propose a novel pose-invariant face recognition system using our model as the entry format for a gallery of known persons. Experimental results with 3D facial models recorded by a Cyberware scanner show that our model provides a superior recognition performance against pose variations, and that texture synthesis process is carried out correctly.
منابع مشابه
A Pose-Invariant Face Recognition System using Linear PCMAP Model
We propose a novel pose-invariant face recognition system using a manifold representation for human faces with pose variations (linear PCMAP model) as the entry format for a database of known persons. The model's generalization capability for unknown head poses enables a continuous coverage of the pose parameter space, providing high approximation accuracy for pose estimation (analysis) and tra...
متن کاملPose-Invariant Face Recognition: Representing Known Persons by View-based Statistical Models
We present a framework for pose-invariant face recognition using parametric linear subspace models as stored representations of known individuals. Each model can be t to an input, resulting in faces of known people whose head pose is aligned to the input face. The model's continuous nature enables the pose alignment to be very accurate, improving recognition performance, while its generalizatio...
متن کاملHybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملPose-invariant face recognition using a 3D deformable model
The paper proposes a novel, pose-invariant face recognition system based on a deformable, generic 3D face model, that is a composite of: (1) an edge model, (2) a color region model and (3) a wireframe model for jointly describing the shape and important features of the face. The 4rst two submodels are used for image analysis and the third mainly for face synthesis. In order to match the model t...
متن کاملPose - Invariant Face Recognition with Parametric Linear
We present a framework for pose-invariant face recognition using parametric linear subspace models as stored representations of known individuals. Each model can be t to an input, resulting in faces of known people whose head pose is aligned to the input face. The model's continuous nature enables the pose alignment to be very accurate, improving recognition performance, while its generalizatio...
متن کامل